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Akstraet--Fluctuation energy equations and the associated constitutive relations are derived for turbulent 
fluid-solid flows. This work is a continuation of previous studies, where the continuity and momentum 
equations were derived. The framework comprising all these equations is valid for all flow regimes. Closure 
of the constitutive relations will depend on the nature of the various flow regimes. The phase interaction 
terms in the fluid and solid fluctuation energy equations differ by the term (m~)({vi} - {ui}). When the 
phase interaction in the momentum equation, (m~), is dominated by the drag force, the above interaction 
term in the energy equation results in an enhancement of fluid turbulence by the presence of particles. 
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1. I N T R O D U C T I O N  

Formulation of the governing equations in a two-phase flow has been an ongoing research topic. 
A number of recent works have treated the two phases separately. Balance laws have been proposed 
for both phases, with interaction terms linking the two (e.g. Ishii 1975; Drew 1983; Prosperetti & 
Jones 1984; McTigue et al. 1986; Ahmadi 1987; Ma 1987). Utilizing the ensemble average, ( ) ,  
and the mass-weighted average, { } (Ahmadi & Shahinpoor 1983), the balance equations for mass 
and momentum have the following general form: 

solid phase, 

and 

Ot cgx, ((pS){u;}) = 0 

+ (p ' )  +{uj} Oxj ] ( p ' ) g ~ + ( m , )  63xj((c){T~i}); 

and 

[1] 

[21 

fluid phase, 

and 

O<Pf> ~X/ O------f-- + . ( (pr ){V ,} )  = 0 [31 

* ~tvJl --~-xj) = (pr)gi -  (m, 

In the above, pS = pse and pr = PrO - c) are, respectively, the partial densities of the solid and fluid 
phase, c is the solid volume concentration, p~ and pf are the solid and fluid material density, 
respectively; ui is the solid velocity and vi is the fluid velocity; T~ and T~ are the stresses for the 
solid and fluid phase, respectively; g~ is gravity; and m/denotes the phase interaction force acting 
on the solid by the fluid per unit volume of the mixture. 

Other averaging processes, e.g. the time average (Ishii 1975) and volume average (Prosperetti & 
Jones 1984), also resulted in the same equations as shown above. However, the interpretations of 
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the terms and constitutive relations are different. The governing equations and the associate 
constitutive relations must be chosen consistently to ensure correct modeling. As discussed in 
Hwang & Shen (1989), one area of confusion in two-phase flow modeling is that, even with the 
same ensemble and mass-weighted average, the constitutive relations derived in various models still 
differ. The discrepancies between the various models appear in their formulation of the solid phase 
stress and the phase interaction. In some models, these terms were obtained from postulates. 

There are very few models that provide separate energy equations for the fluid and solid phases. 
Those known to the authors include Ahmadi & Ma (1990) and Arnold et al. (1990). Because of 
the difference in their constitutive relations for the solid stress and the phase interaction in the 
momentum equations, the energy equations also differ. In fact, it is natural that any discrepancies 
in the momentum equations would propagate into the energy equations, because one utilizes the 
other in its derivation. 

In their earlier work, Hwang & Shen (1989, 1991) established a two-phase model focusing on 
the derivation of the constitutive relations for the solid phase stress and the phase interaction in 
the momentum equations. These terms were derived from basic laws that apply at the particle level. 
In their study, the solid phase stress was expressed as 

= + + [5] 

where {T,~}, {T~} and {T p} are the collisional stress, kinetic stress and particle presence stress, 
respectively. The collisional stress is caused by the momentum transfer from particle collisions. The 
kinetic stress, similar to the Reynolds stress in fluid turbulence, is due to the momentum transfer 
from the random motion of the particles. Details of the collisional and kinetic stress can be found 
in the granular flow literature. An excellent review is given by Campbell (1990). The particle 
presence stress is the portion of the solid stress resulting from the hydrodynamic stress on the 
particle's surface. The fluid phase stress was expressed as 

{ T f} = { T~.} + { TJi}, [6] 

where {T~} and {T~} are, the viscous and turbulence stress, respectively. 
In the same study, the phase interaction term was derived as 

( rn , )=~T({ f }+{L i } )+(c )  OX / ~xj((c){r~}), [7] 

where V 0 is the volume of the particle; f is the drag force acting on a particle and fa~ represents 
the total of additional forces from the added mass, Basset force and Saffman force. The above 
expression to valid whenever the length scale of V(c)  is much larger than the particle's radius, R. 

The above work is unique in its consistent application of a control volume approach to derive 
both the governing equations and the constitutive relations. In the present study, the same 
approach is applied to derive the fluctuation energy equations, thus completing the set of governing 
equations for turbulent fluid-solid flows. 

With the inclusion of the constitutive relations, the system of balance equations is herein named 
the "framework". This framework is valid for all flow regimes. However, closure of the constitutive 
relations will depend on the different flow regimes. An example of such closure for a dilute turbulent 
flow of small particle Reynolds number can be found in Hwang (1989). 

2. F L U C T U A T I O N  ENERGY EQUATIONS 

A condensed derivation of the fluid-phase fluctuation energy equation is given below. Details 
can be found in Hwang (1989). The procedure to obtain the corresponding part for the solid phase 
is similar and thus omitted for brevity. 

Consider a control volume V sitting in a fluid-solid mixture, as shown in figure 1. The continuity 
and the momentum equations for the two phases, [1]-[4], are obtained by balancing the mass and 
linear momentum within the control volume, followed by an ensemble average. Similarly, balancing 



FLUCTUATION ENERGY EQUATIONS FOR TURBULENT FLOWS 889 

the total energy of the fluid within the control volume, one can obtain the following equation for 
a single realization: 

~t fvPf(1-c)(v---f +e)dV+ fsPr(l-c)(v---f +e)vjl~dS= fs(l-c)~T~vjdS 

+fvpf(1-c)g,v~dV+f m[v, dV- r q~.~,dSf-fsq'fii, dS,+ r (1-c)7fdV. [8] 
V dSf i d v 

Here e denotes the thermal energy per unit mass of the fluid as defined in thermodynamics; 
m[= -mr is the phase interaction force acting on the fluid by the solid per unit volume of the 
mixture; q~ and qi denote, respectively, the heat flux through surfaces Sf and S~; h i and il, are the 
unit normal vectors shown in figure 1; and yr represents a distributed heat source per unit volume 
of the fluid, such as the radiation heat. 

Ensemble averaging [8], followed by application of Gauss's theorem to surface integral terms and 
then removal of the integral sign, results in the following ensemble-averaged equation: 

O IPf(V-~2+e))+ 0 IPf(Vmf+e)vi)=~-~-~((1--c)T~jvj) 
ot 

( oq \ + (pfg~v,) + (m~v~) - (1 - c) Oxi/+ ((1 - c)yf). [91 

Here q~ denotes the total heat flux leaving the fluid phase. Substituting v~ = {v~} + v~' into the above 
equation yields the total energy equation for the fluid phase: 

. . . .  . . . .  

(pf) (ff_~ ({v,}{v,}F { ~ } +  {e})+ {,} Oxj\ 2 + { ~ } +  {e})) 

d / f fv;'v;' 
: ~x/,(l  -- c){ T~} {v,}) + ~ ( (1- -c ){  T~v,'})-~ ((p f){v't ~;/ } {Vi})- ~Xj ~(O )l  T Vy}) 

~xj )'c3qi~ + + (pf)g{vi} + (m[){v~} + <m[v:') -- (<pf){evy}) -- (1 -- c)  [~xJ  (1 - c){yr}, [10] 

1~ Control volume V 

S o 

Sf 

S s 

\ 
Control surface S 

F igure  1. A r b i t r a r y  cont ro l  vo lume  set in the mixture .  
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where v~' denotes the fluid fluctuation velocity. The averaged quantity {v;'vi'/2} represents the 
turbulence energy of the fluid. The term d/dxj((pr){evT}) on the right-hand side of the above 
equation is the heat transfer due to turbulence. 

The mechanical energy equation governing the energy of the mean fluid motion can be obtained 
by multiplying the fluid momentum equation [4] by the averaged fluid velocity as follows: 

<pf)~ "Jl-{Vj} {Vi}={Ui} (<l-c){Tri})+<pf)gi{vi}-(m,){vi}. [11] 

In the above, {]'jr.,.} includes the averaged viscous stress {T~} and the averaged turbulence 
stress--{pr v~' v~' }. Hence, 

L({Ui } {Z) i }~  = {Vi} ~-~j ((1- c~{T~}) 

-- {v,} ~---~j(<pf){v;'v~'}) + <pr)g,{v,} + ( m [ ) { v , } .  [12] 

The thermal energy equation for a pure fluid flow has been derived in fluid mechanics as 

( c 3 e O e )  v O V l ~ q t ~ f .  
Pr -~ +vi-~x ~ = T)i-~x j c~xi+ [13] 

This equation describes the balancing of thermal energy in a given infinitesimal volume of fluid. 
Integrating all the thermal energy of the fluid phase inside the control volume for a single realization 
yields 

O--fPf(1-c)edV+fsPf(1-c)ev'lq'dS= f t g t  v v(1-c)T}~xy dV 

- fsrq, fi, dSf,+ fv(l-c)yfdV, [14] 

where Sfi = Sf + Si and fi[ is the unit normal vector of Sri as shown in figure 1. After ensemble 
averaging of the above equation and applying Gauss's theorem in the derivation, the thermal 
equation for the first phase in a two-phase flow can be obtained: 

(d{e} ~9 {e}'~ = ( v dV,] _ ~ i ( ( p f ) { e v ; , }  ) _ (1 -- c) [dxjJ + ((1 -- c)){yr}. 

[15] 

As in the pure fluid equations, the correlation {ev~'} governs the heat flux caused by the fluctuation 
of fluid parcels. 

The fluctuation energy equation for the fluid phase can then be obtained by subtracting the 
mechanical energy equation [12] and the thermal energy equation [15] from the total energy 
equation [11] to yield: 

(1 -- c){T}} ~ (1 c ){ T~j~. ~ }  f .... O{vi} . . . .  ((o ){v, vj }) Oxj 

+ 1 - -C iV ~ })__ pd Vj + ( m i v  i ) .  [16] 
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The heat flux and heat source terms all disappear from the above equation. If we consider an 
incompressible fluid flow, i.e. {`gv~/ax~} = 0, the final form of the fluctuation energy equation for 
the fluid phase can be simplified to yield: 

<"> t 2 j j  

`9 {U/} f . . . .  `9 {t)i '  ~X~( " !' p ' ' '  ) '  

+# (1- c ) {~ } ) - - /a (1 -  c2~xj ~xj~ + (m[vi'), [17] 
where {pf} and pf" are the mass-weighted average and the fluctuation part of fluid pressure, 
respectively. 

Some of the terms in [17] also appear in the fluctuation energy equation of a pure fluid flow. 
For instance, the second to fifth terms on the right-hand side can be identified with the turbulence 
production, the turbulence diffusion, the viscous diffusion and the viscous dissipation term, 
respectively, according to the terminology for turbulent fluid flow. The first term, however, has not 
appeared explicitly in the literature of turbulent two-phase flows. This term suggests that the 
fluctuation energy may be increased or decreased depending on the convergence or divergence of 
the mean fluid motion. In a two-phase flow with an incompressible fluid phase, {`9vi/`gx~} vanishes. 
However, `9{v~}/`gx~ may not. This term is caused by the unsteady and nonuniform solid 
concentration, as discussed in Hwang (1989). 

The fluctuation energy equation for the solid phase can be obtained in a similar manner to yield: 

, ( , 9  f u ; ' u ; ' )  . . `9 . . . .  

`9{u,} ,,. `9{u,} `9 r . . . . .  

u-  ___a  , u ; 'U; 'u ,  , +d-~/((c){T~ J}) `gxj( (p >{ 2 ,})+(miu;'>--(c>{7'}, [18] 
where u~' is the fluctuation velocity of the solid phase; {u~'u~'/2} is its fluctuation energy; and {y'} 
denotes the dissipation rate of solid fluctuation energy. This dissipation is caused by collisions 
between the inelastic particles, the heat thus generated contributes to the heat flux term q~ in [8]. 

Note that the phase interaction terms in the fluctuation energy equations [17] and [18] are 
expressed symbolically as (m~ v i') and (m~ u i'). The constitutive expressions for these terms are 
derived in the next section based on the same concept as used in Hwang & Shen (1991) to obtain 
the phase interaction in the momentum equations. 

3. PHASE INTERACTION TERMS 

The phase interaction terms in the fluctuation energy equations must be derived following the 
same procedures as applied to the rest of the terms in the same equations; namely, they should 
be the difference of the phase interaction terms in the total energy equations minus that in the 
mechanical energy equations. (Note that there is no mcrelated phase interaction in thermal energy 
equations.) 

As shown in figure 1, for any single realization, the total work done by the fluid on the solid 
through the fluid-solid interface inside a control volume is Ss, tti Yu uj dSi, in which Yu denotes the 
stress on (or inside, when particles lie on the control surface) the particle's surface due to the 
hydrodynamic effect. Note that the work done by the hydrodynamic forces on the solid portion 
of the control surface S, has been included in the term Ss cl~l~ T~ uj dS in the total energy equation 
for the solid, in which T~ denotes the stress on the solid intersection S, due to the hydrodynamic 
effect. The mass-weighted average on T~ gives the particle presence stress {T~} in [5]. Thus, all 
energy transfer to the solid phase inside the control volume has been accounted for, and separated 
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into the phase interaction, Ss, f, i Zij ujdSi, and surface flux, SsC~i Tr~jujdS, terms. This separation 
is exactly parallel to the development of the phase interaction term and the particle presence stress 
in the momentum equations. 

For a single realization, the phase interaction in the total energy equation can be obtained as 
follows: 

;s i si s 

= ; ou, \ Ox,}  dVs + JvsZ,, dVs- f cS, ,,ujdS 
=fvcfi, u, dV-fsCl%T~ujdS, [19] 

where Ss~ = S~ + S .  it~ denotes the unit normal vector of S~ pointing outwards from the solid; V~ 
is the solid volume inside the control volume; and fi~ = OEj~/Oxj is, physically, the resultant surface 
force acting on an infinitesimal volume of the solid caused by the hydrodynamic effect of the 
surrounding fluid. The term S vsZuOuj/Ox~ d V~ vanishes because 

vsZo~xidVs = Zo(eo+~o)dV~  
Vs 

= £o .eo+Z~f~dV~ 
Vs 

= O, 

where e} is the rate of deformation of the solid phase, which is zero from nondeformable materials. 
The last term in the above equation equals zero becuase it is the product of a symmetric tensor 
and an antisymmetric tensor. 

The ensemble average of [19] gives 

( fs fl, Z, u dS,l= fv<Cn, u,> dV- fsS,<cr uj>dS. [20] 

Applying Gauss's theorem and removing the integral sign yields the phase interaction term in the 
total energy equation for the solid phase: 

O (cTPuj) .  [21] (miu, )  = (cfiiui) -- ~xi 

Using the expression of (m~) in Hwang & Shen (1991), the phase interaction term in the 
mechanical energy equation for the solid phase can be expressed as 

O (eTa).  [22] (m,>{u,} = (cfi,>{u,} -- {u,} 

The phase interaction term in the fluctuation energy equation of the solid can then be obtained 
by subtracting [22] from [21] as shown below: 

(miu;'> = (miui)  - (mi){ui} 

= cfi " c3 [23] < ,u, > - ~ <cry. ;> - <~rT,> O{uJ}~x, 

The first term on the right-hand side can be further reduced to yield: 

= <c>  a__ ,, 
<m,u;'> ---~o ( { f  u;'} + { f" 'u; ' } ) -  Ox,<C){T~uJ } - <c >{T~} O{uJ} [241 (3x~ 
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Substituting this expression into [18], it is seen that terms involving T~ drop out of the solid-phase 
fluctuation energy equation. This is analogous to what was found in the solid momentum equation 
(Hwang & Sben 1991). The T~ effect, however, is present in the fluid-phase fluctuation equation 
through the phase interaction (m~vi '>.  

Owing to the no-slip condition, the velocities of the solid and the fluid at any point of the 
fluid-solid interface are identical. The local traction forces for the solid (fi~ Y~0 in [18]) and the fluid 
are equal in magnitude and opposite in sense. Therefore, the phase interaction term in the total 
energy equation for the fluid phase satisfies 

(rn ~ vi ) = -- (mi  u, ) .  [25] 

The phase interaction term in the fluctuation energy equation for the fluid phase can then be 
tt , determined in terms of <m~ u~ >. 

f tt ( m i v ,  > = <m[vi> - <m[>{vi} 

= - < m ,  ui> + <m/>{v,} 

= - -<miu; ' )  -- <m,>{ui} + <mi>{vi} 

= -<m, u:' > + <m,>({v,} - {u,}). [261 

It is worthwhile noting that the phase interaction terms of the solid and fluid in the fluctuation 
energy equations are not numerically equal with an opposite sign, but differ by an amount 
<m~ >({v~} - {u~}). This quantity is exactly the difference between the phase interaction terms in the 
mechanical energy equations. Thus, interracial force does mechanical work. This flow of mechan- 
ical energy is, however, not completely transferred from one phase to the other. The difference in 
the phase interaction term in the solid and fluid fluctuation energy equations has not been 
formulated this way in the existing literature. When the drag force dominates the phase interaction 
in the momentum equation, i.e. <m~>, the term <mi>({v~}- {u~}) is easily shown to be positive, 
which means an enhancement of the fluid turbulence. One can postulate from physical reasons that 
this enhancement is from the wake effect caused by the presence of particles. 

4. DISCUSSION 

With the present work, the mathematical framework for two-phase flows has (Hwang & Shen 
1989, 1991) been extended to balancing the fluctuation energy. The application of this framework 
requires detailed modeling or the closure process. 

The objective of the detailed modeling is to express, physically and mathematically, each term 
within the framework in terms of the averaged quantities, e.g. {vi}, {ui}, <c>, {pf), {v"v~'}/2 or 
{u;' ui'}/2. These dependent variables can then be determined by solving the system of equations. 
Boundary conditions, in general, are also required. To achieve this objective, the knowledge of 
granular flow theories, the turbulence models of a single-phase fluid and the modeling of {u"v"} 
are essential, among others. Although not included herein, details of a proposed model for 
turbulent flow of a dilute mixture are given in Hwang (1989). 

In brief, closure of the governing equations can be summarized as follows. No additional 
equation is needed for the modeling of the solid-phase portion; because the appropriate modeling 
of each term is directly obtainable from granular flow theories (Shen & Ackermann 1982; Lun et al. 
1984; Jenkins & Richman 1985; Babi6 1985). Additional equation(s) may be desired for the fluid 
phase, depending on the chosen turbulence model. For instance, if a closure of k-~ models is 
chosen, the balance equation for the dissipation of fluctuation fluid energy, i.e. the e-equation, 
should be added. In this case, the fluctuation energy equation for the fluid phase, [17], serves as 
the k-equation. Since the k ~  models for a pure fluid are most preferable in industrial use (Launder 
& Spalding 1972, 1974), they are recommended to be used in the present framework for 
problem-solving. Existing two-phase models that apply k ~  turbulence models are those of 
Elghobashi & Abou-Arab (1983). Chen& Wood (1985) and Ma (1987); although the frameworks 
developed by them are not the same as the present one. 
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It should be noted that the k ~  models (two-equation models) are not the only option for detailed 
modeling, other models, e.g. zero-equation models (mixing-length models), one-equation models 
or multi-equation turbulence models, can also be applied depending on the nature of the problem 
and the users' judgment. While the turbulence theory for a single-phase fluid is not yet conclusive, 
a similar situation is faced by two-phase modeling. The framework derived in this paper, however, 
is independent of the turbulence model used. 

5. CONCLUSIONS 

The fluctuation energy equations [17] and [18] and the associated constitutive relations [24] and 
[26] have been derived on the same concept as used to derive the mass and momentum equations 
(Hwang & Shen 1989, 1991). A consistent control-volume approach has been used to obtain both 
the governing equations and the constitutive relations. The results differ from other two-phase 
models mainly in the formulations of the terms related to the solid phase stress and the phase 
interaction. 

It is found that the phase interaction terms in the fluctuation energy equations for the fluid and 
the solid are not numerically equal with an opposite sign, but differ by a term (mi)({vi} - {ui}). 
This term enhances the fluid turbulence when the hydrodynamic interaction is dominated by the 
drag force. Together with the mass and momentum equations given in Hwang & Shen (1989, 1991), 
the present work provides a complete framework for modeling turbulent two-phase flows, in which 
the fluid is incompressible and the solid is rigid. The only assumption in this work is that the length 
scale V(c)  is much larger than the particle radius. This framework can serve as the basis for 
detailed modeling of specific flow regimes. 
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